Which Nestohedra Are Removahedra?
نویسنده
چکیده
A removahedron is a polytope obtained by deleting inequalities from the facet description of the classical permutahedron. Relevant examples range from the associahedra to the permutahedron itself, which raises the natural question to characterize which nestohedra can be realized as removahedra. In this note, we show that the nested complex of any connected building set closed under intersection can be realized as a removahedron. We present two different complementary proofs: one based on the building trees and the nested fan, and the other based on Minkowski sums of dilated faces of the standard simplex. In general, this closure condition is sufficient but not necessary to obtain removahedra. However, we show that it is also necessary to obtain removahedra from graphical building sets, and that it is equivalent to the corresponding graph being chordful (i.e. any cycle induces a clique). keywords. Building set, nested complex, nestohedron, graph associahedron, generalized permutahedron, removahedron.
منابع مشابه
Graph Properties of Graph Associahedra
A graph associahedron is a simple polytope whose face lattice encodes the nested structure of the connected subgraphs of a given graph. In this paper, we study certain graph properties of the 1-skeleta of graph associahedra, such as their diameter and their Hamiltonicity. Our results extend known results for the classical associahedra (path associahedra) and permutahedra (complete graph associa...
متن کاملar X iv : m at h / 06 09 18 4 v 1 [ m at h . C O ] 6 S ep 2 00 6 FACES OF GENERALIZED PERMUTOHEDRA
The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, graphical zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas involving descent statistics, calculate generating functions and discuss their relationship with Simon...
متن کاملar X iv : m at h / 06 09 18 4 v 2 [ m at h . C O ] 1 8 M ay 2 00 7 FACES OF GENERALIZED PERMUTOHEDRA
The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γ-vectors. These polytopes include permutohedra, associahedra, graph-associahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpret...
متن کاملFaces of Generalized Permutohedra
The aim of the paper is to calculate face numbers of simple generalized permutohedra, and study their f -, hand γvectors. These polytopes include permutohedra, associahedra, graphassociahedra, simple graphic zonotopes, nestohedra, and other interesting polytopes. We give several explicit formulas for h-vectors and γ-vectors involving descent statistics. This includes a combinatorial interpretat...
متن کاملConvex polytopes from nested posets
Motivated by the graph associahedron KG, a polytope whose face poset is based on connected subgraphs of G, we consider the notion of associativity and tubes on posets. This leads to a new family of simple convex polytopes obtained by iterated truncations. These generalize graph associahedra and nestohedra, even encompassing notions of nestings on CW-complexes. However, these poset associahedra ...
متن کامل